The Synthesis of 4-Acylamino-1,2,4-triazole Derivatives in the Reaction of α-Hydroxyacid Hydrazides and Orthoesters W. Zieliński*, A. Kudelko and W. Czardybon

Department of Organic Technology and Petrochemistry Silesian University of Technology, Ul. Krzywoustego 4, PL-44101 Gliwice, Poland
Received April 19, 2005

The reaction of α -hydroxyacid hydrazides and orthoesters in ethanol-acetic acid solution has been studied and a series of 4-acylamino-1,2,4-triazoles has been obtained as the final products. Some acyclic intermediates: 1-acyl-2-ethoxymethylenehydrazines and N,N'-bis(methanecarbonylamino)formamidine derivative have been also separated during the process. The structures of products was confirmed by typical spectroscopic methods and X-ray analysis.

J. Heterocyclic Chem., 42, 1393 (2005).

α-Hydroxyacid hydrazides constitute potential precursors for the synthesis of nitrogen- and nitrogen-oxygencontaining heterocyclic systems. We know the reactions of α-hydroxyacids with hydrazine hydrate yielding 4amino-1,2,4-triazoles substituted symmetrically in positions 3,5- with hydroxymethyl groups, used principally as building blocks for macrocyclic systems [1-4]. Similarly, the unsubstituted alkanecarboxylic acid hydrazides due to heating with hydrazine hydrate give 1,2,4-triazoles [5]. The amino derivatives are also obtained with satisfactory yields from ester formylhydrazones in the reaction with hydrazine hydrate, ethyl carbazate or tert-butyl carbazate [6]. Some reactions of alkanecarboxylic and arylcarboxylic acid hydrazides with orthoesters yielding the derivatives of 1,3,4-oxadiazoles are also described in the literature [7,8]. Authors reported that the first stage of the reaction between hydrazides of alkanecarboxylic acids and triethyl orthoformate yields 1-acyl-2-ethoxymethylenehydrazines, which subjected to heating undergo condensation to 1,3,4-oxadiazoles. On the other hand, there are also mentions about the formation of six-membered ring such as 1,4,5,6-tetrahydro-1,2,4-triazine-6-one in the reaction of aminoacid hydrazides with orthoesters [9] or 4,5dihydro-1,2,4-triazine-6-one from amino acid imidates and hydrazines [10]. Considering this fact we came to the conclusion that replacing the amino group with a hydroxy group in hydrazide followed by the reaction with orthoesters would lead to the corresponding 1,3,4oxadiazine-5-ones (Scheme 1).

This paper describes the investigation studies on the reactions of hydrazides of α -hydroxyacids with

orthoesters, taking into consideration the possibility to synthesize in this way 1,3,4-oxadiazine derivatives.

Heating the hydrazides of α -hydroxyacids with an excess of orthoesters in the presence of boiling ethanol and acetic acid we obtained the products whose structure did not correspond to the expected 1,3,4-oxadiazine but to 1,2,4-triazole. In fact, the compound obtained from the reaction of benzilic acid hydrazide with triethyl orthopropionate showed the structure corresponding to 4-(1,1-diphenyl-1-hydroxymethanecarbonylamino)-3-(1-hydroxy-1,1-diphenylmethyl)-5-ethyl-1,2,4-triazole (**4i**) as demonstrated by X-ray crystallographic analysis (Figure 1).

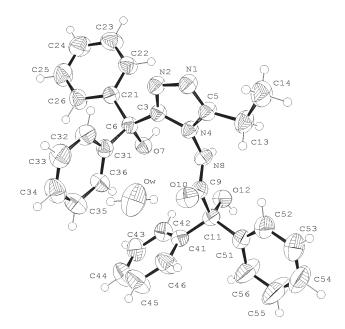


Figure 1. View of the molecule of 4-(-(1,1-diphenyl-1-hydroxymethane-carbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-ethyl-1,2,4-triazole (4i) by X-ray analysis with numbering of the atoms.

Analogous compounds are formed in the reaction of other hydrazides of α -hydroxyacids with orthoesters. Based on the structure of the products, the following reaction scheme can be proposed:

Following literature [7] we assumed that the first stage of the reaction between the hydrazides of α-hydroxyacids (1) and orthoesters yields acyclic intermediates, 1-acyl-2ethoxymethylenehydrazines (2). Initial research on the reactions of α-hydroxyacid hydrazides with the excess of orthoester has proved that the main products are indeed acyclic derivatives of 1-(alkanecarbonyl)-2-ethoxymethylenehydrazine (2). ¹H- and ¹³C-nmr spectra of two intermediates (2h, 2i) produced in the reaction of benzilic acid hydrazide with triethyl orthoacetate and orthopropionate showed a double number of peaks certainly due to the presence of E and Z form. In the case of the unsubstituted arrangement (2g, R³=H) only one isomer was recorded. Imine carbon atom in the compound 2 is susceptible to the attack of nucleophiles, so we assumed that using an excess of orthoester, the reaction would yield the derivatives of 1,3,4-oxadiazine, which might have been formed as a result of intramolecular reaction, similarly as it takes place in the case of the reaction with the hydrazides of α-aminoacids [9]. However, the formation of 4-amino-1,2,4-triazole (4) derivatives in the reaction indicates that the first step of reaction leading to 2 is much slower than the following steps, and as the result, the more nucleophilic molecule of α-hydroxyacid hydrazide reacts with the compound 2 yielding acyclic N, N'-bis(1-hydroxy-1phenylmethanecarbonylamino)formamidine (3d).

The cyclization of *N*,*N*'-bisformamidine derivative 3 takes place in acidic medium at elevated temperature. Important roles in this process are played by acetic acid, which is the catalyst and ethanol which is used as a solvent. According to our examination, in the absence of both of them the reaction stops at the intermediate product -1-alkanecarbonyl-2-ethoxymethylenehydrazine (2). The

structures both of acyclic intermediates and final 4-acylamino-1,2,4-triazoles were confirmed by means of elemental analyses, typical spectroscopic methods and X-ray analysis.

The X-ray investigation revealed that 4-(1,1-diphenyl-1-hydroxy-methanecarbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-ethyl-1,2,4-triazole (4i, Figure 1) crystallizes in amino-carbonyl tautomeric form with one molecule of the water per one molecule of the free base. Selected geometrical parameters for the investigated crystal structure 4i taken from X-ray analysis are given in Table 1 and Table 2.

Table 1
Selected bond lengths [Å] for 4-(1,1-diphenyl-1-hydroxymethanecarbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-ethyl-1,2,4-triazole

(4i) taken from X-ray analysis.

Selected bond	nd Lenght [Å] Selected bond		Lenght [Å]	
O7-C6 O10-C9 O12-C11 N1-C5 N1-N2	1.4174(15) 1.2192(16) 1.4259(16) 1.3014(18) 1.4003(16)	N8-C9 C3-C6 C5-C13 C6-C31 C6-C21	1.3452(18) 1.5247(18) 1.4930(2) 1.5403(18) 1.5398(18)	
N2-C3	1.3065(17)	C9-C11	1.5414(18)	
N4-C5	1.3644(18)	C11-C41	1.5301(2)	
N4-C3	1.3763(16)	C11-C51	1.5306(19)	
N4-N8	1.3845(15)	C13-C14	1.5150(3)	

Table 2
Selected angles [o] for 4-(1,1-diphenyl-1-hydroxymethanecarbonyl-amino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-ethyl-1,2,4-triazole (4i) taken from X-ray analysis.

Selected bonds	Angle [o]	Selected bonds	Angle [o]
C5-N1-N2	107.94(11)	O7-C6-C21	109.19(10)
C3-N2-N1	107.92(11)	C3-C6-C31	107.21(10)
C5-N4-C3	107.00(11)	C3-C6-C21	111.04(11)
C5-N4-N8	123.83(11)	C31-C6-C21	111.65(10)
C3-N4-N8	129.08(11)	O10-C9-N8	123.45(13)
C9-N8-N4	119.28(11)	O10-C9-C11	122.50(12)
N2-C3-N4	108.26(11)	N8-C9-C11	114.05(11)
N2-C3-C6	125.61(11)	O12-C11-C41	111.06(11)
N4-C3-C6	125.94(11)	O12-C11-C51	109.85(11)
N1-C5-N4	108.87(12)	C41-C11-C51	113.22(11)
N1-C5-C13	127.43(13)	O12-C11-C9	105.61(10)
N4-C5-C13	123.69(13)	C41-C11-C9	106.12(11)
O7-C6-C3	110.81(10)	C51-C11-C9	110.65(11)
O7-C6-C31	106.85(10)	C5-C13-C14	112.96(15)

Bond lengths and angles in this ring do not differ significantly from those reported for other related structures [11-13]. The N1–C5 of 1.3014(18) Å and N2–C3 of 1.3065(17) Å bonds have rather double-bond character, while the other N1-N2 and N–C ring bonds have intermediate values between single- and double-bond lengths characteristic for delocalizated π -electron systems (Table 1). The ethyl substituent in the position 5 lies almost in the plane of the tria-

zole ring: torsion angle N1–C5–C13–C14 is -6.9(3)° and displacements of C13 and C14 are 0.024(2) and -0.120(3) Å, respectively. The conformation of the molecule observed in the crystal of **4i** is forced mainly by steric repulsion between the three large substituents in the adjacent 3, 4 and 5 positions of the triazole ring and the intramolecular hydrogen bonds N8–H8 \supset O12, C36–H361 \supset O7, C42–H421 \supset O12 and OW–H1W \supset O10 (Table 3).

was collected by filtration and recrystallized from alcohol (methanol, ethanol). In one case the post-reaction mixture was distilled under reduced pressure to get 2-ethoxymethylenehydrazine intermediate 2a.

1-(1-Hydroxyethanecarbonyl)-2-ethoxymethylenehydrazine (2a).

This compound was obtained as a yellowish liquid in 65% yield; bp 144-146 °C/20 torr; $R_f{:}\ 0.38;\ ^1H$ nmr (DMSO-d $_6,$

Table 3

The geometry of intra- and intermolecular hydrogen bonds in **4i**.

Type	Position code	D-H [Å]	HA [Å]	DA [Å]	D-HA [°]
N8-H8O12	intra	0.911(18)	2.11(2)	2.4777(16)	102.8(15)
C36-H361O7	intra	0.977(18)	2.30(2)	2.664(2)	101.1(16)
C42-H241O12	intra	0.97(2)	2.34(2)	2.748(2)	104.5(14)
OW-H1WO10	intra	0.95(3)	1.93(4)	2.8295(19)	157.0(3)
O7-H7N1	2645 [a]	0.94(2)	1.79(2)	2.7217(17)	167.7(18)
O7-H7N2	2645 [a]	0.94(2)	2.598(19)	3.3683(15)	139.2(15)
N8-H8N2	2645 [a]	0.911(18)	2.24(2)	3.0216(18)	111.9(8)
O12-H12OW	2545 [b]	0.869(19)	1.947(18)	2.7686(19)	157.3(19)

[a] 2645 = 3/2-x, -1/2+y, 1/2-z; [b] 2545 = 1/2-x, -1/2+y, 1/2-z.

The packing of the molecules in the crystal of **4i** is determined by the net of the intermolecular hydrogen bonds with geometry and symmetry codes presented in Table 3.

In conclusion, it must be emphasized that this type of reaction of α -hydroxyacid hydrazides and orthoesters in ethanolacetic acid solution which so far has not been described in literature, affords new potentials involving the synthesis of asymmetrically substituted 4-amino-1,2,4-triazoles.

EXPERIMENTAL

UV spectra were recorded on a Shimadzu UV-2102 spectrophotometer; Elemental analyses were carried out with a Perkin Elmer 240c analyser. The ¹H- and ¹³C-nmr spectra were recorded on a Varian Inova 300 spectrometer in DMSO solution using TMS as internal standard. Thin layer chromatography was carried out on silica gel 60 F₂₅₄ (Merck) thin layer chromatography plates using a benzene-ethyl acetate (1:3 v/v) as the mobile phase. Orthoesters were purchased from Fluka Chemie GmbH.

Synthesis of α -hydroxyacids Hydrazides (1a-c).

The hydrazides of α -hydroxyacids were obtained according to a standard procedure in the reaction of ethyl esters of α -hydroxyacids with hydrazine hydrate to yield: The hydrazide of lactic acid (1a) [14]: bp 153-156 °C/2 torr; The hydrazide of mandelic acid (1b) [15]: mp 151-153 °C; The hydrazide of benzilic acid (1c) [16]: mp 167-169 °C.

General Procedure for the Preparation of Substituted 1-(Alkanecarbonyl)-2-ethoxymethylenehydrazine Derivatives (2).

A solution of the appropriate hydrazide (1) (0.025 mole) and triethyl orthoester (20 mL) was heated under mild reflux for 24 hours. Then it was cooled giving white precipitate of **2**, which

Me₄Si): δ 1.22 (t, J = 7.2, 3 H, OCH₂CH₃), 1.33 (d, J = 6.9, 3 H, CH₃), 4.12 (q, J = 7.2, 2 H, OCH₂CH₃), 4.42 (q, J = 6.9, 1 H, HC=O), 6.03 (d, 1 H, OH), 8.17 (s, 1H, HC=N), 8.51 (s, 1 H, NH) ppm; uv: λ_{max} (ε·10-3) MeOH: 227.6 (6.93) nm.

Anal. Calcd. for $C_6H_{12}N_2O_3$: C, 45.01; H, 7.57; N, 17.49. Found: C, 45.22; H, 7.70; N, 17.56.

1-(1-Hydroxy-1-phenylmethanecarbonyl)-2-ethoxymethylenehydrazine (**2d**).

This compound was obtained as a white solid in 32% yield; mp 125-129 °C; R_f: 0.04; $^1\mathrm{H}$ nmr (DMSO-d₆, Me₄Si): δ 1.22 (t, J=7.2, 3 H, OCH₂CH₃), 4.04 (q, J=7.2, 2 H, OCH₂CH₃), 4.95 (d, J=4.5, 1 H, PhCH), 6.23 (d, J=4.5, 1 H, OH), 7.26-7.45 (m, 5H, Ph), 8.32 (s, 1H, HC=N), 10.71 (s, 1 H, NH) ppm; uv: λ_{max} (ϵ ·10⁻³) MeOH: 205.0 (25.70), 232.0 (12.50) nm.

Anal. Calcd. for $C_{11}H_{14}N_2O_3$: C, 59.44; H, 6.36; N, 12.60. Found: C, 59.76; H, 6.22; N, 12.74.

1-(1,1-Diphenyl-1-hydroxymethanecarbonyl)-2-ethoxyethylene-hydrazine (2h).

This compound was obtained as a white solid in 75% yield; mp 162-165 °C; R_f: 0.17, 0.50; ¹H nmr (DMSO-d₆, Me₄Si): δ 1.22 (t, J = 7.2, 3 H, OCH₂CH₃), 1.25 (t, J = 7.2, 3 H, OCH₂CH₃), 1.86 (s, 3H, CH₃), 2.06 (s, 3H, CH₃), 4.07 (q, J = 7.2, 2 H, OCH₂CH₃), 4.15 (q, J = 7.2, 2 H, OCH₂CH₃), 6.80 (s, 1 H, OH), 7.00 (s, 1 H, OH), 7.26-7.43 (m, 20H, Ph), 10.00 (s, 1 H, NH), 10.21 (s, 1 H, NH) ppm; uv: λ_{max} (ϵ ·10⁻³) MeOH: 208.0 (25.80), 227.0 (15.00) nm.

Anal. Calcd. for $C_{18}H_{20}N_2O_3$: C, 69.20; H, 6.46; N, 8.96. Found: C, 69.36; H, 6.52; N, 9.05.

1-(1,1-Diphenyl-1-hydroxymethanecarbonyl)-2-ethoxypropylenehydrazine (2i).

This compound was obtained as a white solid in 73% yield; mp 120-122 °C; R_f : 0.17, 0.54; 1H nmr (DMSO- d_6 , Me_4Si): δ 0.98 (t, J

= 7.5, 3 H, CH₂CH₃), 1.06 (t, J = 7.5, 3 H, CH₂CH₃) 1.22 (t, J = 6.9, 3 H, OCH₂CH₃), 1.25 (t, J = 6.9, 3 H, OCH₂CH₃), 2.25 (q, J = 7.5, 2H, CH_2 CH₃), 2.43 (q, J = 7.5, 2H, CH_2 CH₃), 4.07 (q, J = 6.9, 2 H, OCH₂CH₃), 4.14 (q, J = 6.9, 2 H, OCH₂CH₃), 6.82 (s, 1 H, OH), 7.01 (s, 1 H, OH), 7.24-7.43 (m, 20H, Ph), 9.98 (s, 1 H, NH), 10.27 (s, 1 H, NH) ppm; 13 C nmr: δ 9.4 (CH₃), 10.1 (CH₃), 14.1 (OCH₂CH₃), 15.1 (OCH₂CH₃), 21.6 (CH_2 CH₃), 22.1 (CH_2 CH₃), 61.9 (OCH₂CH₃), 63.8 (OCH₂CH₃), 80.4 (Ph₂COH), 80.5 (Ph₂COH), 127.2, 127.3, 127.4, 127.5, 127.6, 127.7, 143.7, 144.1 (C_{Ar}), 156.0 (C=N), 167.2 (C=N), 167.8 (C=O), 169.4 (C=O) ppm; uv: λ_{max} (ϵ ·10-3) MeOH: 205.0 (25.60), 232.0 (12.50) nm.

Anal. Calcd. for $C_{19}H_{22}N_2O_3$: C, 69.91; H, 6.80; N, 8.58. Found: C, 70.06; H, 6.71; N, 8.78.

The Preparation of N,N'-Bis(1-hydroxy-1-phenylmethanecarbonylamino)-formamidine (3d).

A mixture of mandelic acid hydrazide (**1b**) (1.87 g, 11.3 mmole) and 2-ethoxymetylenehydrazine intermediate (**2d**) in methanol (15 mL) was heated under reflux until the disappearance of the intermediate (**2d**) (tlc) was completed. Then methanol was removed using a rotary evaporator giving white crude product (**3d**) which was crystallized from ethyl acetate (yield: 26%); mp 155-158 °C; R_f: 0.02; 1 H nmr (DMSO-d₆, Me₄Si): δ 5.19 (d, J = 3.0, 1H, PhCH), 5.54 (d, J = 3.0, 1H, PhCH), 6.13 (br s, 1H, OH), 6.59 (d, J = 3.0, 1H, OH), 7.22-7.49 (m, 10H, Ph), 8.47 (s, 1H, HC=N), 9.81 (br s, 1H, NH), 10.38 (s, 1 H, NH), 11.65 (s, 1H, NHN=C) ppm; uv: λ_{max} (ϵ ·10⁻³) MeOH: 207.0 (21.50), 247.0 (8.80) nm.

Anal. Calcd. for $C_{11}H_{14}N_2O_3$: C, 59.63; H, 5.31; N, 16.35. Found: C, 59.86; H, 5.42; N, 16.50.

General Procedure for the Preparation of Substituted 4-Acylamino-1,2,4-triazoles (4).

The appropriate triethyl orthoester (0.06 mole) was dropped into a boiling mixture of the hydrazide (1) (0.02 mole) in ethanol (7 mL) and glacial acetic acid (1 mL). It was kept under reflux for about 1-2 hours. After cooling the solution a white precipitate was obtained that was collected by filtration and the crude product (4) was crystallized from ethyl acetate.

4-(1-Hydroxyethanecarbonylamino)-3-(1-hydroxyethyl)-1,2,4-triazole (**4a**).

This compound was obtained as a white solid in 50% yield; mp 192-194 °C; R_f: 0.08; ¹H nmr (DMSO-d₆, Me₄Si): δ 1.32 (d, 3H, J = 6.9 Hz, CH₃), 1.42 (d, 3H, J = 6.9 Hz, CH₃CC=O), 4.24 (q, 1H, J = 6.9 Hz, CH), 4.65 (q, 1H, J = 6.9 Hz, CHC=O), 5.50 (s, 1H, COH), 5.90 (s, 1H, O=CCOH), 8.47 (s, 1H, H-C5), 11.50 (s, 1H, NH) ppm; ¹³C nmr: δ 18.5 (CH₃-CHOH-C3), 20.6 (CH₃-CHOHCONH), 65.4 (CH₃-CHOH-C3), 68.3 (CH₃-CHOHCONH), 143.2 (C5), 151.6 (C3), 172.0 (C=O) ppm.

Anal. Calcd. for $C_7H_{12}N_4O_3$: C, 41.99; H, 6.06; N, 27.98; O, 23.97. Found: C, 42.05; H, 6.03; N, 27.95; O, 23.90.

4-(1-Hydroxyethanecarbonylamino)-3-(1-hydroxyethyl)-5-methyl-1,2,4-triazole (**4b**).

This compound was obtained as a white solid in 64% yield; mp 227-231 °C; R_f : 0.04; 1H nmr (DMSO-d₆, Me₄Si): δ 1.33 (d, 3H, J = 6.6 Hz, CH₃), 1.40 (d, 3H, J = 6.9 Hz, CH₃CC=O), 2.12 (s, 3H, CH₃C=N), 4.20-4.38 (m, 1H, CH), 4.50-4.70 (m, 1H, CHC=O), 5.35 (d, 1H, J = 6.0 Hz, COH), 5.89 (d, 1H, J = 5.1 Hz, O=CCOH), 11.20 (s, 1H, NH) ppm; 13 C nmr: δ 8.0 (CH₃-C5), 18.5 (*C*H₃-CHOH-C3), 20.5 (*C*H₃-CHOHCONH), 65.3 (CH₃-CHOHCONH), 65.3 (CH₃-CH

CHOH-C3), 68.3 (CH₃-CHOHCONH), 151.6 (C3), 152.3 (C5), 171.8 (C=O) ppm.

Anal. Calcd. for: C₈H₁₄N₄O₃: C, 44.85; H, 6.59; N, 26.15; O, 22.41. Found: C, 44.86; H, 6.41; N, 26.31; O, 22.42.

4-(1-Hydroxyethanecarbonylamino)-3-(1-hydroxyethyl)-5-ethyl-1,2,4-triazole (**4c**).

This compound was obtained as a white solid in 48% yield; mp 240-243 °C; R_f: 0.10; $^1\mathrm{H}$ nmr (DMSO-d₆, Me₄Si): δ 1.16 (t, 3H, J = 7.6 Hz, CH₂CH₃), 1.32 (d, 3H, J = 6.9 Hz, CH₃), 1.40 (d, 3H, J = 6.6 Hz, CH₃CC=O), 2.46 (q, 2H, J = 7.6 Hz, CH₂CH₃), 4.20-4.40 (m, 1H, CH), 4.50-4.78 (m, 1H, CHC=O), 5.34 (d, 1H, J = 5.4 Hz, COH), 5.85 (d, 1H, J = 4.8 Hz, O=CCOH), 11.19 (s, 1H, NH) ppm; $^{13}\mathrm{C}$ nmr: δ 7.8 (CH₃CH₂-C5), 16.0 (CH₃CH₂-C5), 18.5 (CH₃-CHOH-C3), 20.5 (CH₃-CHOHCONH), 65.3 (CH₃-CHOH-C3), 68.4 (CH₃-CHOHCONH), 151.7 (C-3), 153.5 (C5), 171.7 (C=O) ppm.

Anal. Calcd. for: C₉H₁₆N₄O₃: C, 47.36; H, 7.08; N, 24.53; O, 21.03. Found: C, 47.30; H, 7.10; N, 24.57; O, 20.96.

4-(1-Hydroxy-1-phenylmethanecarbonylamino)-3-(1-hydroxy-1-phenylmethyl)-1,2,4-triazole (**4d**).

This compound was obtained as a white solid in 51% yield; mp 244-245 °C; R_f: 0.06; ¹H nmr (DMSO-d₆, Me₄Si): δ 4.92 (d, 1H, J = 5.2 Hz, CH), 5.01 (d, 1H, J = 5.5 Hz, CHC=O), 5.96 (d, 1H, J = 5.2 Hz, COH), 6.12 (d, 1H, J = 5.5 Hz, O=CCOH), 7.23-7.47 (m, 10H, Ph), 9.96 (s, 1H, H-C5), 11.40 (s, 1H, NH) ppm; ¹³C nmr: δ 66.3 (PhCHOH-C3), 70.8 (PhCHOHCONH), 126.5-129.1, 139.5, 141.4 (C_{Ar}), 145.1 (C5), 153.5 (C3), 171.1 (C=O) ppm.

Anal. Caled. for C₁₇H₁₆N₄O₃: C, 62.96; H, 4.98; N, 17.28; O, 14.78. Found: C, 62.98; H, 4.99; N, 17.30; O, 14.72.

4-(1-Hydroxy-1-phenylmethanecarbonylamino)-3-(1-hydroxy-1-phenylmethyl)-5-methyl-1,2,4-triazole (**4e**).

This compound was obtained as a white solid in 41% yield; mp 231-232°C; R_{f} : 0.04; 1 H nmr (DMSO-d₆, Me₄Si): δ 2.00 (s, 3H, CH₃), 5.12 (s, 1H, CH), 5.52 (s, 1H, CHC=O), 5.16 (d, 1H, J = 5.7 Hz, COH), 6.71 (d, 1H, J = 4.2 Hz, O=CCOH), 7.25-7.52 (m, 10H, Ph), 11.49 (s, 1H, NH) ppm; 13 C nmr: δ 8.4 (CH₃-C5), 66.4 (Ph*C*HOH-C3), 70.8 (Ph*C*HOHCONH), 126.5-128.3, 139.2, 141.3 (C_{Ar}), 152.6 (C5), 153.7 (C3), 171.1 (C=O) ppm.

Anal. Calcd. for C₁₈H₁₈N₄O₃: C, 63.89; H, 5.33; N, 16.56; O, 14.19. Found: C, 63.27; H, 5.37; N, 16.42; O, 14.94.

4-(1-Hydroxy-1-phenylmethanecarbonylamino)-3-(1-hydroxy-1-phenylmethyl)-5-ethyl-1,2,4-triazole (**4f**).

This compound was obtained as a white solid in 32% yield; mp 211-213°C; R_f: 0.07; 1 H nmr (DMSO-d₆, Me₄Si): δ 1.02 (t, 3H, J = 7.2 Hz, CH₂CH₃), 2.32 (q, 2H, J = 7.2 Hz, CH₂CH₃), 5.22 (d, 1H, COH), 5.50 (s, 1H, CHC=O), 6.12 (s, 1H, COH), 6.62 (s, 1H, O=CCOH), 7.26-7.52 (m, 10H, Ph), 11.53 (s, 1H, NH) ppm; 13 C nmr: δ 8.3 (CH₃CH₂-C5), 16.5 (CH₃CH₂-C5), 66.3 (PhCHOH-C3), 70.9 (PhCHOHCONH), 126.8-129.1, 139.0, 141.6 (C_{Ar}), 153.7 (C3), 154.0 (C5), 171.1 (C=O) ppm.

Anal. Calcd. for C₁₉H₂₀N₄O₃: C, 64.75; H, 5.73; N, 15.90; O, 13.62. Found: C, 64.77; H, 5.75; N, 15.85; O, 13.59.

4-(1,1-Diphenyl-1-hydroxymethanecarbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-1,2,4-triazole (4g).

This compound was obtained as a white solid in 25% yield; mp 209-211°C; R_{f} : 0.07; ^{1}H nmr (DMSO-d $_{6}$, $Me_{4}Si$): δ 6.70 (s, 1H,

COH), 6.80 (s, 1H, O=CCOH), 7.26-7.42 (m, 20H, Ph), 9.82 (s, 1H, H-C5), 11.22 (s, 1H, NH) ppm; 13 C nmr: δ 76.8 (Ph₂COH-C3), 80.8 (Ph₂(OH)CONH), 126.6-128.6, 142.9-143.3 (C_{Ar}), 155.7 (C3), 156.1 (C5), 171.2 (C=O) ppm.

Anal. Calcd. for $C_{29}H_{24}N_4O_3$: C, 73.09; H, 5.08; N, 11.75. Found: C, 73.20; H, 4.99; N, 11.93.

4-(1,1-Diphenyl-1-hydroxymethanecarbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-methyl-1,2,4-triazole (4h).

This compound was obtained as a white solid in 82% yield; mp 205-207°C; R_{f} : 0.03; ^{1}H nmr (DMSO-d₆, Me₄Si): δ 1.73 (s, 3H, CH₃), 6.60 (s, 1H, COH), 6.90 (s, 1H, O=CCOH), 7.00-7.28 (m, 20H, Ph), 10.99 (s, 1H, NH) ppm; ^{13}C nmr: δ 8.9 (CH₃-C5), 76.7 (Ph₂COH-C3), 80.8 (Ph₂(OH)CONH), 127.0-127.6, 142.8-144.3 (C_{Ar}), 152.7 (C5), 155.7 (C3), 171.2 (C=O) ppm.

Anal. Calcd. for $C_{30}H_{26}N_4O_3$: C, 73.44; H, 5.35; N, 11.41. Found: C, 73.57; H, 5.50; N, 11.49.

4-(1,1-Diphenyl-1-hydroxymethanecarbonylamino)-3-(1,1-diphenyl-1-hydroxymethyl)-5-ethyl-1,2,4-triazole (4i).

This compound was obtained as a white solid in 48% yield; mp 213-215°C; R_f: 0.02; ¹H nmr (DMSO-d₆, Me₄Si): δ 0.88 (t, 3H, J = 7.5 Hz, CH₂CH₃), 2.02 (q, 2H, J = 7.5 Hz, CH₂CH₃), 6.56 (s, 1H, COH), 6.87 (s, 1H, O=CCOH), 7.03-7.28 (m, 20H, Ph), 11.00 (s, 1H, NH) ppm; ¹³C nmr: δ 8.6 (CH₃CH₂-C5), 16.6 (CH₃CH₂-C5), 76.7 (Ph₂COH-C3), 80.7 (Ph₂(OH)CONH), 126.8-127.9, 142.6-143.5 (C_{Ar}), 155.1 (C5), 155.5 (C3), 171.0 (C=O) ppm.

Anal. Calcd. for $C_{31}H_{28}N_4O_3$: C, 73.78; H, 5.60; N, 11.10. Found: C,73.85; H, 5.71; N, 11.24.

Crystal Data for 4i.

Compound 4i has $C_{31}H_{28}N_4O_3 \cdot H_2O$, FW = 522.59, monoclinic, space group $P2_1/n$, a = 15.210(3) Å, b = 8.8730(18) Å, c =21.519(4) Å, $\beta = 109.77(3)^{\circ}$, V = 2733.1(9) Å³, Z = 4, d_{calcd} = 1.270 gcm⁻³, F(000) = 1104, $\mu(CuK\alpha) = 0.690$ mm⁻¹. Colorless prismatic crystals suitable for X-ray diffraction analysis were grown by slow evaporation of an ethanol solution. X-ray data were collected on the Bruker SMART APEX CCD diffractometer at room temperature using CuK α radiation ($\lambda = 1.54178$ Å); crystal size: 0.10 x 0.09 x 0.04, ω scans, no. of measured reflection 30346 $(\theta \text{ range } 3.12 - 70.04^{\circ}, \text{ index ranges } -18 \le h \le 18, -10 \le k \le 9, -26 \le 18, -10 \le h \le 18, -10 \le 18, -10 \le h \le 18, 1 \le 26$), no. of independent reflection 5186 ($R_{int} = 0.0275$), absorption correction: multi-scan, Tmin/Tmax = 0.529 [17]. The structure was solved by direct methods using SIR92 [18] and refined by full-matrix least-squares with SHELXL97 [19]. All hydrogen atoms were located from $\Delta \rho$ map and their coordinates were refined with isotropic displacement parameters taken as 1.5 times those of the respective parent atoms. The final R = 0.0390, wR =0.1132 for 4429 reflections with $I > 2\sigma(I)$ and 443 parameters, S =1.067, an extinction coefficient K = 0.0023(2), $(\Delta/\sigma)_{max} = 0.000$, $(\Delta \rho)_{max} = 0.200$ and $(\Delta \rho)_{min} = -0.210$ eÅ⁻³. Molecular graphics were prepared using ORTEP3 for Windows [20], PARST [21] and PLATON/PLUTON [22] were used for geometrical calculations. All calculations were performed using WINGX ver. 1.64.05 package [23]. CCDC 270400 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.ac.uk/conts/retrieving.html.

Acknowledgements.

The authors wish to thank crystallographers: Andrzej Fruziński, Ph.D. from Technical University of Lodz and Zbigniew Karczmarzyk, Ph.D. from University of Podlasie for X-ray analysis.

REFERENCES AND NOTES

- [1] L. Echegoyen, M. V. Martinez-Diaz, J. de Mendoza and T. Torres, *Tetrahedron*, **48**, 9545 (1992).
- [2] M. V. Martinez-Diaz, J. de Mendoza, F. Santos and T. Torres, *Tetrahedron Asymmetry*, **5**, 1291 (1994).
- [3] M. V. Martinez-Diaz, J. de Mendoza and T. Torres, *Synthesis*, **1994**, 1091.
- [4] A. R. Katritzky, S. R. El-Zemity, P. Leeming, C. M. Hartshorn and P. J. Steel, *Tetrahedron Asymmetry*, 7, 1621 (1996).
- [5] J. de Mendoza, J. M. Ontoria, C. Ortega and T. Torres, Synthesis, 1992, 398.
 - [6] A. A. Ikizler and N. Yildirim, J. Het. Chem., 35, 377 (1998).
- [7] C. Ainsworth and R. E. Hackler, J. Org. Chem., 31, 3442 (1966).
- [8] A. P. Grekov, O. P. Schwayka and L. M. Eugunova, *Zh. Obsc. Chim.*, **29**, 2027 (1959).
- [9] P. S. Lobanov, A. L. Grebionkin, D. J. Zaicew, W. A. Ginolin and A. A. Potechin, *Khim. Gieterotsikl. Soedin.*, **1991**, 1388.
- [10] D. J. Collins, T. C. Hughesand W. M. Johnson, Aust. J. Chem., 52, 379 (1999).
- [11] F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, *Typical interatomic distances: organic compounds*, in: International Tables for Crystallography, Vol. C, Kluwer Academic Publishers, Dordrecht/Boston/London, 1995, pp. 685-706.
- [12] K. Chinnakali, H. K. Fun, A. Senthilvelan, K. Sriraghavan and V. T. Ramakrishnan, *Acta Cryst.*, **C55**, 1136 (1999).
- [13] A. Mrozek, J. Karolak-Wojciechowska, P. Amiel and J. Barbe, J. Mol. Struct., 524, 151 (2000).
- [14] A. A. Potechin and W. M. Karelskij, Zh. Org. Khim., 7, 2100 (1971).
 - [15] E. M. Luis and A. McKenzie, J. Chem. Soc., 98, 647 (1941).
- [16] H. Aspelund, Acta Acad. Aboensis Math. at Phys. 6, 12, 8 (1932).
- [17] G. M. Sheldrick, SADABS, ver. 2.06. University of Göttingen: Germany, 2002.
- [18] A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Cryst., 26, 343 (1993).
- [19] G. M. Sheldrick, SHELX97 (Includes SHELXS97, SHELXL97, CIFTAB). Programs for Crystal Structure Analysis (Release 97-2). University of Göttingen: Germany, 1997.
- [20] L. J. Farrugia, ORTEP3 for Windows, *J. Appl. Cryst.*, **30**, 565 (1997).
 - [21] M. Nardelli, PARST, Comput. Chem., 7, 95 (1983).
- [22] A. L. Spek, PLATON/PLUTON, *Acta Cryst.*, **A46**, C34 (1990).
 - [23] L. J. Farrugia, WINGX, J. Appl. Cryst., 32, 837 (1999).